Determination of all possible orders of weight 16 circulant weighing matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

nonexistence of two circulant weighing matrices of weight 81

‎in this paper‎, ‎we prove the nonexistence of two weighing matrices of‎ ‎weight 81‎, ‎namely $cw(88,81)$ and $cw(99,81)$‎. ‎we will apply two‎ ‎very different methods to do so; for the case of $cw(88,81)$‎, ‎we‎  ‎will use almost purely counting methods‎, ‎while for $cw(99,81)$‎, ‎we‎ ‎will use algebraic methods‎.

متن کامل

The Classification of Circulant Weighing Matrices of Weight 16 and Odd Order

In this paper we completely classify the circulant weighing matrices of weight 16 and odd order. It turns out that the order must be an odd multiple of either 21 or 31. Up to equivalence, there are two distinct matrices in CW (31, 16), one matrix in CW (21, 16) and another one in CW (63, 16) (not obtainable by Kronecker product from CW (21, 16)). The classification uses a multiplier existence t...

متن کامل

On circulant weighing matrices

Algebraic techniques are employed to obtain necessary conditions for the existence of certain circulant weighing matrices. As an application we rule out the existence of many circulant weighing matrices. We study orders n = 8 +8+1, for 10 ~ 8 ~ 25. These orders correspond to the number of points in a projective plane of order 8.

متن کامل

Finiteness of circulant weighing matrices of fixed weight

Let n be any fixed positive integer. Every circulant weighing matrix of weight n arises from what we call an irreducible orthogonal family of weight n. We show that the number of irreducible orthogonal families of weight n is finite and thus obtain a finite algorithm for classifying all circulant weighing matrices of weight n. We also show that, for every odd prime power q, there are at most fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2006

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2005.06.009